pennylane_cirq.MixedStateSimulatorDevice¶
- class MixedStateSimulatorDevice(wires, shots=None, qubits=None)[source]¶
Bases:
pennylane_cirq.simulator_device.SimulatorDevice
Cirq mixed-state simulator device for PennyLane.
- Parameters
wires (int or Iterable[Number, str]]) – Number of subsystems represented by the device, or iterable that contains unique labels for the subsystems as numbers (i.e.,
[-1, 0, 2]
) or strings (['ancilla', 'q1', 'q2']
).shots (int) – Number of circuit evaluations/random samples used to estimate expectation values of observables. Shots need to >= 1. If
None
, expectation values are calculated analytically.qubits (List[cirq.Qubit]) – A list of Cirq qubits that are used as wires. The wire number corresponds to the index in the list. By default, an array of
cirq.LineQubit
instances is created.
Attributes
Whether shots is None or not.
Number of device executions to store in a cache to speed up subsequent executions.
The hash of the circuit upon the last execution.
Number of times this device is executed by the evaluation of QNodes running on this device
The observables to be measured and returned.
set() -> new empty set object set(iterable) -> new set object
The operation queue to be applied.
Get the supported set of operations.
Mapping from free parameter index to the list of
Operations
in the device queue that depend on it.Returns the shot vector, a sparse representation of the shot sequence used by the device when evaluating QNodes.
Number of circuit evaluations/random samples used to estimate expectation values of observables
Returns the density matrix of the circuit prior to measurement.
Ordered dictionary that defines the map from user-provided wire labels to the wire labels used on this device
All wires that can be addressed on this device
- analytic¶
Whether shots is None or not. Kept for backwards compatability.
- author = 'Xanadu Inc'¶
- cache¶
Number of device executions to store in a cache to speed up subsequent executions. If set to zero, no caching occurs.
- Type
int
- circuit_hash¶
The hash of the circuit upon the last execution.
This can be used by devices in
apply()
for parametric compilation.
- name = 'Cirq Mixed-State Simulator device for PennyLane'¶
- num_executions¶
Number of times this device is executed by the evaluation of QNodes running on this device
- Returns
number of executions
- Return type
int
- obs_queue¶
The observables to be measured and returned.
Note that this property can only be accessed within the execution context of
execute()
.- Raises
ValueError – if outside of the execution context
- Returns
list[~.operation.Observable]
- observables¶
- op_queue¶
The operation queue to be applied.
Note that this property can only be accessed within the execution context of
execute()
.- Raises
ValueError – if outside of the execution context
- Returns
list[~.operation.Operation]
- operations¶
- parameters¶
Mapping from free parameter index to the list of
Operations
in the device queue that depend on it.Note that this property can only be accessed within the execution context of
execute()
.- Raises
ValueError – if outside of the execution context
- Returns
the mapping
- Return type
dict[int->list[ParameterDependency]]
- pennylane_requires = '>=0.16.0'¶
- short_name = 'cirq.mixedsimulator'¶
- shot_vector¶
Returns the shot vector, a sparse representation of the shot sequence used by the device when evaluating QNodes.
Example
>>> dev = qml.device("default.qubit", wires=2, shots=[3, 1, 2, 2, 2, 2, 6, 1, 1, 5, 12, 10, 10]) >>> dev.shots 57 >>> dev.shot_vector [ShotTuple(shots=3, copies=1), ShotTuple(shots=1, copies=1), ShotTuple(shots=2, copies=4), ShotTuple(shots=6, copies=1), ShotTuple(shots=1, copies=2), ShotTuple(shots=5, copies=1), ShotTuple(shots=12, copies=1), ShotTuple(shots=10, copies=2)]
The sparse representation of the shot sequence is returned, where tuples indicate the number of times a shot integer is repeated.
- Type
list[ShotTuple[int, int]]
- shots¶
Number of circuit evaluations/random samples used to estimate expectation values of observables
- state¶
Returns the density matrix of the circuit prior to measurement.
Note
The state includes possible basis rotations for non-diagonal observables. Note that this behaviour differs from PennyLane’s default.qubit plugin.
- version = '0.17.0-dev'¶
- wire_map¶
Ordered dictionary that defines the map from user-provided wire labels to the wire labels used on this device
- wires¶
All wires that can be addressed on this device
Methods
access_state
([wires])Check that the device has access to an internal state and return it if available.
active_wires
(operators)Returns the wires acted on by a set of operators.
adjoint_jacobian
(tape[, starting_state, …])Implements the adjoint method outlined in Jones and Gacon to differentiate an input tape.
analytic_probability
([wires])Return the (marginal) probability of each computational basis state from the last run of the device.
apply
(operations, **kwargs)Apply quantum operations, rotate the circuit into the measurement basis, and compile and execute the quantum circuit.
batch_execute
(circuits)Execute a batch of quantum circuits on the device.
Get the capabilities of this device class.
check_validity
(queue, observables)Checks whether the operations and observables in queue are all supported by the device.
define_wire_map
(wires)Create the map from user-provided wire labels to the wire labels used by the device.
density_matrix
(wires)Returns the reduced density matrix prior to measurement.
estimate_probability
([wires, shot_range, …])Return the estimated probability of each computational basis state using the generated samples.
execute
(circuit, **kwargs)Execute a queue of quantum operations on the device and then measure the given observables.
The device execution context used during calls to
execute()
.expval
(observable[, shot_range, bin_size])Returns the expectation value of observable on specified wires.
generate_basis_states
(num_wires[, dtype])Generates basis states in binary representation according to the number of wires specified.
Returns the computational basis samples generated for all wires.
map_wires
(wires)Map the wire labels of wires using this device’s wire map.
marginal_prob
(prob[, wires])Return the marginal probability of the computational basis states by summing the probabiliites on the non-specified wires.
Called during
execute()
after the individual operations have been executed.Called during
execute()
after the individual observables have been measured.Called during
execute()
before the individual operations are executed.Called during
execute()
before the individual observables are measured.probability
([wires, shot_range, bin_size])Return either the analytic probability or estimated probability of each computational basis state.
reset
()Reset the backend state.
sample
(observable[, shot_range, bin_size])Return a sample of an observable.
sample_basis_states
(number_of_states, …)Sample from the computational basis states based on the state probability.
states_to_binary
(samples, num_wires[, dtype])Convert basis states from base 10 to binary representation.
statistics
(observables[, shot_range, bin_size])Process measurement results from circuit execution and return statistics.
supports_observable
(observable)Checks if an observable is supported by this device. Raises a ValueError,
supports_operation
(operation)Checks if an operation is supported by this device.
to_paulistring
(observable)Convert an observable to a cirq.PauliString
var
(observable[, shot_range, bin_size])Returns the variance of observable on specified wires.
- access_state(wires=None)¶
Check that the device has access to an internal state and return it if available.
- Parameters
wires (Wires) – wires of the reduced system
- Raises
QuantumFunctionError – if the device is not capable of returning the state
- Returns
the state or the density matrix of the device
- Return type
array or tensor
- static active_wires(operators)¶
Returns the wires acted on by a set of operators.
- Parameters
operators (list[Operation]) – operators for which we are gathering the active wires
- Returns
wires activated by the specified operators
- Return type
Wires
- adjoint_jacobian(tape, starting_state=None, use_device_state=False)¶
Implements the adjoint method outlined in Jones and Gacon to differentiate an input tape.
After a forward pass, the circuit is reversed by iteratively applying inverse (adjoint) gates to scan backwards through the circuit. This method is similar to the reversible method, but has a lower time overhead and a similar memory overhead.
Note
The adjoint differentiation method has the following restrictions:
As it requires knowledge of the statevector, only statevector simulator devices can be used.
Only expectation values are supported as measurements.
- Parameters
tape (QuantumTape) – circuit that the function takes the gradient of
- Keyword Arguments
starting_state (tensor_like) – post-forward pass state to start execution with. It should be complex-valued. Takes precedence over
use_device_state
.use_device_state (bool) – use current device state to initialize. A forward pass of the same circuit should be the last thing the device has executed. If a
starting_state
is provided, that takes precedence.
- Returns
the derivative of the tape with respect to trainable parameters. Dimensions are
(len(observables), len(trainable_params))
.- Return type
array
- Raises
QuantumFunctionError – if the input tape has measurements that are not expectation values or contains a multi-parameter operation aside from
Rot
- analytic_probability(wires=None)¶
Return the (marginal) probability of each computational basis state from the last run of the device.
PennyLane uses the convention \(|q_0,q_1,\dots,q_{N-1}\rangle\) where \(q_0\) is the most significant bit.
If no wires are specified, then all the basis states representable by the device are considered and no marginalization takes place.
Note
marginal_prob()
may be used as a utility method to calculate the marginal probability distribution.- Parameters
wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal probabilities for. Wires not provided are traced out of the system.
- Returns
list of the probabilities
- Return type
array[float]
- apply(operations, **kwargs)¶
Apply quantum operations, rotate the circuit into the measurement basis, and compile and execute the quantum circuit.
This method receives a list of quantum operations queued by the QNode, and should be responsible for:
Constructing the quantum program
(Optional) Rotating the quantum circuit using the rotation operations provided. This diagonalizes the circuit so that arbitrary observables can be measured in the computational basis.
Compile the circuit
Execute the quantum circuit
Both arguments are provided as lists of PennyLane
Operation
instances. Useful properties includename
,wires
, andparameters
, andinverse
:>>> op = qml.RX(0.2, wires=[0]) >>> op.name # returns the operation name "RX" >>> op.wires # returns a Wires object representing the wires that the operation acts on <Wires = [0]> >>> op.parameters # returns a list of parameters [0.2] >>> op.inverse # check if the operation should be inverted False >>> op = qml.RX(0.2, wires=[0]).inv >>> op.inverse True
- Parameters
operations (list[Operation]) – operations to apply to the device
- Keyword Arguments
rotations (list[Operation]) – operations that rotate the circuit pre-measurement into the eigenbasis of the observables.
hash (int) – the hash value of the circuit constructed by CircuitGraph.hash
- batch_execute(circuits)¶
Execute a batch of quantum circuits on the device.
The circuits are represented by tapes, and they are executed one-by-one using the device’s
execute
method. The results are collected in a list.For plugin developers: This function should be overwritten if the device can efficiently run multiple circuits on a backend, for example using parallel and/or asynchronous executions.
- Parameters
circuits (list[tapes.QuantumTape]) – circuits to execute on the device
- Returns
list of measured value(s)
- Return type
list[array[float]]
- classmethod capabilities()¶
Get the capabilities of this device class.
Inheriting classes that change or add capabilities must override this method, for example via
@classmethod def capabilities(cls): capabilities = super().capabilities().copy() capabilities.update( supports_inverse_operations=False, supports_a_new_capability=True, ) return capabilities
- Returns
results
- Return type
dict[str->*]
- check_validity(queue, observables)¶
Checks whether the operations and observables in queue are all supported by the device. Includes checks for inverse operations.
- Parameters
queue (Iterable[Operation]) – quantum operation objects which are intended to be applied on the device
observables (Iterable[Observable]) – observables which are intended to be evaluated on the device
- Raises
DeviceError – if there are operations in the queue or observables that the device does not support
- define_wire_map(wires)¶
Create the map from user-provided wire labels to the wire labels used by the device.
The default wire map maps the user wire labels to wire labels that are consecutive integers.
However, by overwriting this function, devices can specify their preferred, non-consecutive and/or non-integer wire labels.
- Parameters
wires (Wires) – user-provided wires for this device
- Returns
dictionary specifying the wire map
- Return type
OrderedDict
Example
>>> dev = device('my.device', wires=['b', 'a']) >>> dev.wire_map() OrderedDict( [(<Wires = ['a']>, <Wires = [0]>), (<Wires = ['b']>, <Wires = [1]>)])
- density_matrix(wires)¶
Returns the reduced density matrix prior to measurement.
Note
Only state vector simulators support this property. Please see the plugin documentation for more details.
- estimate_probability(wires=None, shot_range=None, bin_size=None)¶
Return the estimated probability of each computational basis state using the generated samples.
- Parameters
wires (Iterable[Number, str], Number, str, Wires) – wires to calculate marginal probabilities for. Wires not provided are traced out of the system.
shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use. If not specified, all samples are used.
bin_size (int) – Divides the shot range into bins of size
bin_size
, and returns the measurement statistic separately over each bin. If not provided, the entire shot range is treated as a single bin.
- Returns
list of the probabilities
- Return type
array[float]
- execute(circuit, **kwargs)¶
Execute a queue of quantum operations on the device and then measure the given observables.
For plugin developers: instead of overwriting this, consider implementing a suitable subset of
Additional keyword arguments may be passed to the this method that can be utilised by
apply()
. An example would be passing theQNode
hash that can be used later for parametric compilation.- Parameters
circuit (CircuitGraph) – circuit to execute on the device
- Raises
QuantumFunctionError – if the value of
return_type
is not supported- Returns
measured value(s)
- Return type
array[float]
- execution_context()¶
The device execution context used during calls to
execute()
.You can overwrite this function to return a context manager in case your quantum library requires that; all operations and method calls (including
apply()
andexpval()
) are then evaluated within the context of this context manager (see the source ofDevice.execute()
for more details).
- expval(observable, shot_range=None, bin_size=None)¶
Returns the expectation value of observable on specified wires.
Note: all arguments accept _lists_, which indicate a tensor product of observables.
- Parameters
observable (str or list[str]) – name of the observable(s)
wires (Wires) – wires the observable(s) are to be measured on
par (tuple or list[tuple]]) – parameters for the observable(s)
- Returns
expectation value \(\expect{A} = \bra{\psi}A\ket{\psi}\)
- Return type
float
- static generate_basis_states(num_wires, dtype=<class 'numpy.uint32'>)¶
Generates basis states in binary representation according to the number of wires specified.
The states_to_binary method creates basis states faster (for larger systems at times over x25 times faster) than the approach using
itertools.product
, at the expense of using slightly more memory.Due to the large size of the integer arrays for more than 32 bits, memory allocation errors may arise in the states_to_binary method. Hence we constraint the dtype of the array to represent unsigned integers on 32 bits. Due to this constraint, an overflow occurs for 32 or more wires, therefore this approach is used only for fewer wires.
For smaller number of wires speed is comparable to the next approach (using
itertools.product
), hence we resort to that one for testing purposes.- Parameters
num_wires (int) – the number wires
dtype=np.uint32 (type) – the data type of the arrays to use
- Returns
the sampled basis states
- Return type
array[int]
- generate_samples()¶
Returns the computational basis samples generated for all wires.
Note that PennyLane uses the convention \(|q_0,q_1,\dots,q_{N-1}\rangle\) where \(q_0\) is the most significant bit.
Warning
This method should be overwritten on devices that generate their own computational basis samples, with the resulting computational basis samples stored as
self._samples
.- Returns
array of samples in the shape
(dev.shots, dev.num_wires)
- Return type
array[complex]
- map_wires(wires)¶
Map the wire labels of wires using this device’s wire map.
- Parameters
wires (Wires) – wires whose labels we want to map to the device’s internal labelling scheme
- Returns
wires with new labels
- Return type
Wires
- marginal_prob(prob, wires=None)¶
Return the marginal probability of the computational basis states by summing the probabiliites on the non-specified wires.
If no wires are specified, then all the basis states representable by the device are considered and no marginalization takes place.
Note
If the provided wires are not in the order as they appear on the device, the returned marginal probabilities take this permutation into account.
For example, if the addressable wires on this device are
Wires([0, 1, 2])
and this function gets passedwires=[2, 0]
, then the returned marginal probability vector will take this ‘reversal’ of the two wires into account:\[\mathbb{P}^{(2, 0)} = \left[ |00\rangle, |10\rangle, |01\rangle, |11\rangle \right]\]- Parameters
prob – The probabilities to return the marginal probabilities for
wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal probabilities for. Wires not provided are traced out of the system.
- Returns
array of the resulting marginal probabilities.
- Return type
array[float]
- probability(wires=None, shot_range=None, bin_size=None)¶
Return either the analytic probability or estimated probability of each computational basis state.
Devices that require a finite number of shots always return the estimated probability.
- Parameters
wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal probabilities for. Wires not provided are traced out of the system.
- Returns
list of the probabilities
- Return type
array[float]
- reset()¶
Reset the backend state.
After the reset, the backend should be as if it was just constructed. Most importantly the quantum state is reset to its initial value.
- sample(observable, shot_range=None, bin_size=None)¶
Return a sample of an observable.
The number of samples is determined by the value of
Device.shots
, which can be directly modified.Note: all arguments support _lists_, which indicate a tensor product of observables.
- Parameters
observable (str or list[str]) – name of the observable(s)
wires (Wires) – wires the observable(s) is to be measured on
par (tuple or list[tuple]]) – parameters for the observable(s)
- Raises
NotImplementedError – if the device does not support sampling
- Returns
samples in an array of dimension
(shots,)
- Return type
array[float]
- sample_basis_states(number_of_states, state_probability)¶
Sample from the computational basis states based on the state probability.
This is an auxiliary method to the generate_samples method.
- Parameters
number_of_states (int) – the number of basis states to sample from
state_probability (array[float]) – the computational basis probability vector
- Returns
the sampled basis states
- Return type
array[int]
- static states_to_binary(samples, num_wires, dtype=<class 'numpy.int64'>)¶
Convert basis states from base 10 to binary representation.
This is an auxiliary method to the generate_samples method.
- Parameters
samples (array[int]) – samples of basis states in base 10 representation
num_wires (int) – the number of qubits
dtype (type) – Type of the internal integer array to be used. Can be important to specify for large systems for memory allocation purposes.
- Returns
basis states in binary representation
- Return type
array[int]
- statistics(observables, shot_range=None, bin_size=None)¶
Process measurement results from circuit execution and return statistics.
This includes returning expectation values, variance, samples, probabilities, states, and density matrices.
- Parameters
observables (List[Observable]) – the observables to be measured
shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use. If not specified, all samples are used.
bin_size (int) – Divides the shot range into bins of size
bin_size
, and returns the measurement statistic separately over each bin. If not provided, the entire shot range is treated as a single bin.
- Raises
QuantumFunctionError – if the value of
return_type
is not supported- Returns
the corresponding statistics
- Return type
Union[float, List[float]]
- supports_observable(observable)¶
- Checks if an observable is supported by this device. Raises a ValueError,
if not a subclass or string of an Observable was passed.
- Parameters
observable (type or str) – observable to be checked
- Raises
ValueError – if observable is not a
Observable
class or string- Returns
True
iff supplied observable is supported- Return type
bool
- supports_operation(operation)¶
Checks if an operation is supported by this device.
- Parameters
operation (type or str) – operation to be checked
- Raises
ValueError – if operation is not a
Operation
class or string- Returns
True
iff supplied operation is supported- Return type
bool
- to_paulistring(observable)¶
Convert an observable to a cirq.PauliString
- var(observable, shot_range=None, bin_size=None)¶
Returns the variance of observable on specified wires.
Note: all arguments support _lists_, which indicate a tensor product of observables.
- Parameters
observable (str or list[str]) – name of the observable(s)
wires (Wires) – wires the observable(s) is to be measured on
par (tuple or list[tuple]]) – parameters for the observable(s)
- Raises
NotImplementedError – if the device does not support variance computation
- Returns
variance \(\mathrm{var}(A) = \bra{\psi}A^2\ket{\psi} - \bra{\psi}A\ket{\psi}^2\)
- Return type
float
Contents
Usage
API
Downloads